Corning® SMF-28e+® Optical Fiber

Product Information

CORNING

How to Order

when ordering.

Contact your sales

representative, or call the Optical Fiber Customer Service Department:

Ph: 1-607-248-2000 (U.S. and Canada)

+44-1244-525-320 (Europe)

Email: cofic@corning.com Please specify the fiber type, attenuation, and quantity

Corning® SMF-28e+® optical fiber is the industry leader in comprehensive single-mode fiber performance for metro and access networks. It is ITU-T Recommendation G.652.D-compliant and fully backward compatible with legacy standard single-mode fibers. SMF-28e+ fiber is built on Corning's solid foundation of quality and proven performance. Since Corning brought the first fiber to market more than 40 years ago, Corning's leadership in singlemode fiber innovation has been unparalleled.

Optical Specifications

Maximum Attenuation

Wavelength	Maximum Value*
(nm)	(dB/km)
1310	≤ 0.35
1383**	≤ 0.35
1490	≤ 0.24
1550	≤ 0.20
1625	≤ 0.23

^{*} Alternate attenuation offerings available upon request.

Attenuation vs. Wavelength

Range	Ref. λ	Max. α Difference
(nm)	(nm)	(dB/km)
1285 – 1330	1310	0.03
1525 – 1575	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Mandrel Diameter (mm)	Number of Turns	Wavelength (nm)	Induced Attenuation* (dB)
32	1	1550	≤ 0.03
50	100	1310	≤ 0.03
50	100	1550	≤ 0.03
60	100	1625	≤ 0.03

^{*}The induced attenuation due to fiber wrapped around a mandrel of a specified diameter.

Point Discontinuity

Wavelength	Point Discontinuity
(nm)	(dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength (λ_{cc})

 $\lambda_{cc} \leq 1260 \text{ nm}$

Mode-Field Diameter

Wavelength	MFD
(nm)	(µm)
1310	9.2 ± 0.4
1550	10.4 ± 0.5

Dispersion

Wavelength	Dispersion Value
(nm)	[ps/(nm·km)]
1550	≤ 18.0
1625	≤ 22.0

Zero Dispersion Wavelength (λ_0): 1304 nm $\leq \lambda_0 \leq$ 1324 nm Zero Dispersion Slope (S_0) : $\leq 0.092 \text{ Ps/(nm}^2 \cdot \text{km)}$

Polarization Mode Dispersion (PMD)

Value (ps/ \sqrt{km})

	Value (ps/ vkill)
PMD Link Design Value	≤ 0.06*
Maximum Individual Fiber PMD	≤ 0.1
*C	

^{*}Complies with IEC 60794-3: 2001, Section 5.5, Method 1, (m = 20, Q = 0.01%), September 2001.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMDo). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

^{**} Attenuation values at this wavelength represent post-hydrogen aging performance.

Dimensional Specifications

Glass Geometry

Fiber Curl	≥ 4.0 m radius of curvature
Cladding Diameter	125.0 ± 0.7 µm
Core-Clad Concentricity	≤ 0.5 µm
Cladding Non-Circularity	≤ 0.7%

Coating Geometry

Coating Diameter	$242 \pm 5 \mu M$
Coating-Cladding Concentricity	< 12 µm

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm, and 1625 nm (dB/km)
Temperature Dependence	-60°C to +85°C*	≤ 0.05
Temperature Humidity Cycling	-10°C to +85°C up to 98% RH	≤ 0.05
Water Immersion	23°C ± 2°C	≤ 0.05
Heat Aging	85°C ± 2°C	≤ 0.05
Damp Heat	85°C at 85% RH	≤ 0.05

^{*}Reference temperature = +23°C

Operating Temperature Range: -60°C to +85°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress \geq 100 kpsi (0.69 GPa).*

Length

Fiber lengths available up to 63.0 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Core Diameter	8.2 µm
Numerical Aperture	0.14 NA is measured at the one percent power level of a one-dimensional far-field scan at 1310 nm.
Effective Group Index of Refraction (Neff)	1310 nm: 1.4674 1550 nm: 1.4679
Fatigue Resistance Parameter (N _d)	20
Coating Strip Force	Dry: 0.6 lbs. (3N) Wet, 14-day room temperature: 0.6 lbs. (3N)
Rayleigh Backscatter Coefficient (for 1 ns Pulse Width)	1310 nm: -77 dB 1550 nm: -82 dB

^{*}Higher proof test levels available.